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Hard coral cover on the Great Barrier Reef (GBR) is on a trajectory of
decline. However, little is known about past coral mortality before
the advent of long-term monitoring (circa 1980s). Using paleoeco-
logical analysis and high-precision uranium-thorium (U-Th) dating,
we reveal an extensive loss of branchingAcropora corals and changes
in coral community structure in the Palm Islands region of the central
GBR over the past century. In 2008, dead coral assemblages were
dominated by large, branching Acropora and living coral assem-
blages by genera typically found in turbid inshore environments.
The timing of Acropora mortality was found to be occasionally syn-
chronous among reefs and frequently linked to discrete disturbance
events, occurring in the 1920s to 1960s and again in the 1980s to
1990s. Surveys conducted in 2014 revealed low Acropora cover
(<5%) across all sites, with very little evidence of change for up to
60 y at some sites. Collectively, our results suggest a loss of resilience
of this formerly dominant key framework builder at a regional scale,
with recovery severely lagging behind predictions. Our study implies
that the management of these reefs may be predicated on a shifted
baseline.
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Loss of hard coral abundance, diversity, and habitat structure as a
result of numerous anthropogenic (1, 2) and climatic (3) factors

is a problem faced by many reefs on a global scale (4–6). On the
Great Barrier Reef (GBR), substantial losses in hard coral cover
have been observed on the inshore (7), midshelf, and offshore reefs
(8), with the most severe coral mortality event on record occurring
as recently as 2016–2017 (9). Despite this, little attention has been
paid to past coral mortality and changes in community structure,
with most of our present knowledge about the ecology of the GBR
coming from spatially and temporally limited data that have con-
tributed toward a lack of consensus over its current state (10–14).
Combined available monitoring data provide a time series spanning
only the last ∼30 y (7, 15–17), beginning after many of the human
activities that had already started by the early 19th century. Thus,
these data provide only a small “window” to examine how coral
communities have responded to disturbances, both natural and
anthropogenic, over time. As a result, the limited detailed long-
term information has essentially given rise to what is known as the
“shifting baseline syndrome,” in which the state of coral reefs
documented in the early pioneering studies of modern reef ecol-
ogy may erroneously be considered as a “normal” reef, and used
as a baseline to evaluate subsequent changes (18, 19). Without
longer-term information, there is the risk that scientists and man-
agement bodies may make overoptimistic assessments of the state
of the reef (10), or set lower or incorrect recovery targets (20). A
more worrying consequence is that the transition of reefs away
from a coral-dominated landscape may have begun decades ago

before the onset of modern monitoring programs, with chronic
stressors such as a decline in water quality (e.g., increased nutrients
and other contaminants) lowering the resilience of reefs to recover
from acute disturbances (6). What we may now be witnessing is the
tail end of this transition where recent acute disturbance events,
such as bleaching and cyclones, have pushed coral communities
toward or past their tipping point (21).
The most widely reported example of modern reef decline

comes from the Caribbean, where Acropora palmata and Acropora
cervicornis communities that persisted during the Pleistocene and
Holocene have within the past four decades been replaced by
fleshy macroalgae due to both natural and human influences (2,
22, 23). This phase shift has subsequently resulted in a widespread
loss of architectural complexity that threatens the future viability
of these reefs (24). In the Palm Islands region, central inshore
GBR, coral communities suffered extensive mortality following the
1998 mass bleaching event (25, 26), resulting in a shift from coral
to macroalgal dominated states at some locations (27). Acropora
communities were the hardest hit (15, 26) due to their suscepti-
bility to thermal bleaching (28) and have since shown little sign of
recovery in the Palm Islands (SI Appendix, Table S1). However,
chronological and paleoecological evidence suggests that the tim-
ing of Acropora loss began much earlier at Pelorus Island, northern
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Palm Islands, and is unprecedented for the past millennium (29).
The reason for this demise has been attributed to a decline in
water quality associated with widespread catchment clearing in the
late 19th century following European settlement (29). However,
with widespread coral-reef monitoring only beginning in the 1990s,
there are few data available to be able to assess regional trends
before the past few decades and whether or not inshore reefs of
the GBR are following a similar trajectory as the Caribbean.
In the absence of modern monitoring data, paleoecological

records can provide invaluable insight into past ecosystem states
(22, 29, 30) with the discordance between living assemblages and
dead skeletal remains proving to be a powerful tool in detecting
recent changes in community structure as a result of anthropo-
genic disturbance (22, 31). Where a strong and persistent envi-
ronmental change occurs, compositional changes can take place in
the associated biota and can be recorded in the death assemblage
(32). Here we use comparisons of modern and dead coral assem-
blages (termed “death assemblage”) combined with highly precise
uranium–thorium (U-Th) dating to provide an important baseline
understanding of historical change in coral communities within the
Palm Islands, and assess the timing and extent of mortality at a
regional scale.

Results
In 2008, benthic surveys conducted within the Palm Islands re-
gion (Fig. 1 and SI Appendix, Fig. S1 and Table S2) revealed
highly variable live coral cover ranging from (mean ±1 SD) 3.4 ±
0.6% at Havannah S3 (where S denotes “site”) to 74.9 ± 9.9% at
Havannah S1. Significant differences in benthic community
composition were observed among sites (SI Appendix, Tables
S3 and S4). Sites with high live coral cover (>30%) were com-
posed mainly of monospecific stands of Pavona, Goniopora,
Porites, and Echinopora typical of modern turbid inshore reef

environments (33, 34; Fig. 2A). Sites with <30% live coral cover
were dominated primarily by macroalgae (up to 89.5%), other
substrate (including sand), dead hard coral, or soft corals, with low
densities of Turbinaria, Psammacora, Galaxea, and Acropora col-
onies (Figs. 1 and 2 A and C, and SI Appendix, Fig. S2).
Comparisons between the living and death assemblages

revealed significant differences in the relative abundance of coral
genera between [permutational multivariate analysis of variance
(PERMANOVA); F1,99 = 18.399, P = 0.001; SI Appendix, Table S3]
and among sites (PERMANOVA; F12,99 = 1.7755, P = 0.001; SI
Appendix, Tables S4 and S5). Acropora was consistently more
prevalent in the death assemblage than the living assemblage, es-
pecially at sites with low coral cover (Fig. 2 B and C). Importantly,
even where live Acropora were reported in 2008, these colonies
were dominated by early successional caespitose and digitate col-
onies, which are functionally different from the once historically
dominant framework building branching Acropora growth form.
The corrected 230Th age data obtained from 215 dead Acropora

samples collected from seven sites in the Palm Islands region char-
acterized by high dead coral and algal cover (Pelorus S1, S2, S3,
Fantome S3, Havannah S2, S3 and Pandora S1) ranged between AD
1623.5 ± 6.3 and 2006.9 ± 2.0 (Fig. 3 and SI Appendix, Table S6).
The timing of mortality across all sites at Pelorus occurred roughly
over the same time period during the early to mid-20th century
between AD 1922.5 ± 9.6 and 1961.5 ± 7.6. Of the 19 230Th ages
obtained from Pelorus S1 where most of the substrate was over-
grown by living Pavona cactus, 14 dated to more recent times be-
tween 1988.0 ± 7.9–1998.9 ± 7.2. Twenty-six (out of 27) 230Th ages
obtained from dead Acropora skeletons collected from Fantome
S3 bracketed the period AD 1969.0 ± 5.6–1999.3 ± 1.9, and coincide
with the timing of mortality determined from 54 (out of 56) 230Th
ages obtained fromHavannah S2 and S3 (AD 1972.7 ± 2.3–2001.7 ±
0.5). A highly constrained chronology was obtained from Pandora
S1, where 41 230Th ages obtained from dead Acropora skeletons
revealed the timing of mortality to be between AD 1994.1 ± 1.3 and
1999.1 ± 5.5.

Discussion
Comparisons between living coral and coral death assemblages in
the Palm Islands region indicate a dramatic change in coral com-
munity composition during the period (post-∼1850) of expanded
European urbanization, land clearing, mining, and agriculture
in northern Australia. Most noticeable has been the loss of branching
Acropora colonies accompanied by a shift toward turbid water
corals and noncoral-dominated assemblages. Using the highly
precise and accurate U-Th dating method, the timing of mortality
for 215 dead Acropora colonies from seven sites was found to be
occasionally synchronous between reefs and attributable to multiple
acute disturbance events (high sea-surface temperatures, storms,
flood plumes) over the past century of record (Fig. 3). The earliest
period of mortality detected occurred at Pelorus between AD
1904.7 ± 8.7 and 1952.9 ± 6.6 (Fig. 3 and SI Appendix, Table S6),
inclusive of two (possibly three) discrete mortality events and well
before the first detailed surveys were performed on the leeward side
of the island in 2001 (35). We hypothesize that the mortality ob-
served at Pelorus may have resulted from (i) increased sediment
loading from the nearby Herbert River during the transition from a
positive to a strong negative Pacific Decadal Oscillation (PDO)
phase (e.g., during the mid-1940s) (Fig. 3). Floods that follow pe-
riods of drought carry an increased loading of suspended sediment
to nearby coastal waterways due to a loss of groundcover and en-
hanced erosion (36) with deleterious effects on the growth, survival,
reproduction, and recruitment of hard coral colonies (for review see
ref. 37). This time period also coincides with extensive land clearing
of the Herbert catchment for grazing and sugarcane post-European
settlement (there were two operating sugar mills on the Herbert
River by the late 1800s) that may have contributed further to the
amount of sediment being delivered to adjacent waters; and/or
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Fig. 1. Map of the Palm Islands and sampling locations. Pie graphs depict
modern benthic cover (percentage) for categories live coral, dead coral, soft
coral, algae, and other substrate (including sand) surveyed in 2008.
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(ii) anomalous sea-surface temperatures (SSTs) similar to that seen
during the latest positive PDO phase (Fig. 3). These events may
have been less pronounced at the other three reefs as the extent of
flood plumes varies over spatial scales (38). Alternatively, the
other three reefs may have recovered from disturbance, which is
undetectable within surface death assemblages that only reach
∼10-cm depth. A second period of mortality also occurred be-
tween AD 1980 ± 17 and 2006.9 ± 2.0, although the majority of
dates came from Pelorus S1. The absence of 230Th ages for the
∼30-y period between the peaks in age data suggests that there
was a window of opportunity for branching Acropora communities
to recover at Pelorus S1; however, branching Acropora failed to
reestablish in this time at Pelorus S2 and S3. For the other four sites
at Havannah, Fantome, and Pandora Reef, mortality (determined
from the surficial death assemblage) is largely restricted to AD
1970–2000. During this window, significant Acropora mortality
events (evident in the synchronicity in 230Th age data between
reefs) appear to have occurred around ∼1983, ∼1987, ∼1994, and
∼1998, coinciding with high SSTs and extensive flood plumes as-
sociated with Cyclone Sadie (39) (Fig. 3 and SI Appendix, Table
S7). At Pandora Reef, the timing and cause of mortality is well
constrained not only by 41 highly precise 230Th ages (40), but also
by the independently documented collapse of Acropora corals at
this site due to El Niño-induced high SSTs (15, 26).
Perhaps one of the most sobering outcomes of this study is the

observed lack of, or delayed recovery in, Acropora colonies on these
nearshore coral reefs. For areas of reef in which a high cover of fast-
growing corals such as Acropora is killed by major natural distur-
bances, including thermal bleaching, predisturbance levels of coral
cover can reestablish in a narrow range of 5–10 y (41–44). However,
these recovery rates were observed on clear-water, mid-, and off-
shore reefs following acute natural disturbances. By contrast, re-
covery rates for the Palm Islands, and inshore reefs in general, that
are exposed to both chronic and acute events, are poorly under-
stood (but, see ref. 45). The longest study capturing disturbance/
recovery dynamics was conducted by Done et al. (26) at Pandora
Reef over a period of 24 y (1981–2005), where Acropora corals
showed remarkable resilience following several disturbance events
(including cyclones, thermal stress, and flood events), attaining 60%

coverage in a space of 10–15 y following disturbances in the 1970s.
Following catastrophic losses during the 1997–1998 bleaching event,
however, recovery rates have severely lagged behind predictions
based on previous rates of recruitment and growth (26). For ex-
ample, Acropora comprised only 0.5 ± 0.4% of the total live coral
cover in 2008 when surveyed in this study, 2.1 ± 3.1% in 2013 at one
of the nearby Australian Institute of Marine Science (AIMS) Long-
Term Monitoring Program sites, and 0.8% and 1% cover at 2- and
5-m depth, respectively, at the AIMS Marine Monitoring Program
(MMP) site in 2014 (Fig. 4 and SI Appendix, Table S1).
Over longer time scales, the approach used here can provide a

means to understand and quantify mortality and recovery in coral
communities. By dating dead coral skeletal material that repre-
sents recent growth before mortality, the 230Th age distributions
produced from multiple fragments closely approximates episodes
of mortality, with multiple peaks implying repeated episodes of
mortality. Importantly, multiple peaks in the 230Th age-distribution
data could also be interpreted as being evidence of recovery [where
enough source material was (re)generated to produce another age
distribution]. As an example, the period between mortality events
(or “recovery” period) based on 230Th age data obtained from
Pelorus S1 is ∼30 y (∼1950 to late 1980s–early 1990s), which would
represent the minimum time period for recovery to allow for
branching coral colonies to regrow [although this site is now
overgrown by turbid water corals such as P. cactus (Fig. 2 A and C)
that may have outcompeted Acropora following disturbance in the
late 20th century (Fig. 3D)]. While further dating of coral material
is required (particularly from deeper within the reef matrix to
capture older material that may have been buried as the reef re-
covered), this “fossil estimate” of recovery is not far off of modern
observations and testifies to the utility of U-Th dating to measure
recovery rates in areas where data are lacking. For Pelorus S2 and
S3, recovery has been limited for more than 60 y since mortality in
the mid-20th century, which far exceeds both modern and fossil
estimates of recovery.
Low contemporaneous Acropora abundance is a common fea-

ture across the entire Palm Islands region (Fig. 4 and SI Appendix,
Table S1), and is in stark contrast to observations made in the mid-
1980s and early 1990s (26, 46). Since the concentration of Acropora
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Fig. 2. Comparisons between living and death assemblages. (A) Principal coordinates analysis (PCO) of living coral genera at each reef within the Palm
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mortality in the mid- and late 20th century, between 16–60 y have
passed with very little sign of recovery (less than 2% Acropora
cover across the majority of reefs in the Palm Islands region sur-
veyed by AIMS between 2012 and 2014; Fig. 4 and SI Appendix,
Table S1). While an increased number of disturbances in recent
years has been implicated as the primary driver behind the ob-
served lack of recovery at many reef sites (10), these acute events
cannot explain fully the reasons behind ongoing population de-
cline (12) and the unusually long lag time between mortality and
recovery.
Potential explanations for delayed recovery include a loss of

parental broodstock and recruitment failure (12) due to increased
SSTs and declines in water quality (e.g., ref. 47). Despite the wide-
spread death of mature colonies in the Palm Islands region fol-
lowing the 1998 and 2002 mass coral bleaching events and resulting
dramatic decline in the supply of larvae to reefs within the region
(48, 49), recent studies have recorded moderate numbers of
acroporid corals recruiting on settlement tiles (7, 35, 50), suggesting
that larval supply is not entirely a limiting factor. However, many
larvae fail to develop past the settlement phase into juvenile size
classes (35, 51), ultimately contributing to the low density of juvenile
corals on the leeward side of these reefs (51). Low rates of re-
cruitment and postsettlement survival have been associated with
high sedimentation and nutrient enrichment in the Palm Islands
region (52, 53) and elsewhere on inshore reefs of the GBR (54).
This is not surprising given the estimated 5- to 10-fold increase in
sediment delivery since European settlement (41, 55). Monitoring
of water-quality parameters in the region has also revealed a me-
dium (10–20%) to high (20–50%) frequency of exceedance (total
number of daily observations that exceed the threshold value) of
chlorophyll a guideline trigger values (0.45 μg L−1) between the
years of 2002–2012 (56). Fine sediments in such turbid and nutrient-
rich waters aggregate to form sticky flocs or “marine snow” that
have been shown to exert detrimental to lethal effects on corals
(57). Moreover, high macroalgal cover associated with enhanced
levels of nutrients (58) can reduce recruitment and suppress fe-
cundity and growth in hard corals (59). This, together with low
abundances of key herbivorous fish (27) is likely to contribute to the
high abundance of macroalgae (60) and low coral cover at some
sites (viz., Pandora S1 and Havannah S3). However, it cannot ex-
plain the ubiquitously low level of Acropora cover at sites with low
macroalgae cover, such as Pelorus and Fantome Island. For these
locations, the lack of consolidation of large expanses of dead
Acropora rubble may also limit larval settlement and increase mor-
tality of recruits as it is rolled by waves, collapses, and/or crumbles
(61, 62). Density of juvenile corals, structural complexity, herbivo-
rous fish biomass, and nutrient conditions have all been found to be
important predictors of recovery or regime shifts in coral commu-
nities that experienced regionwide mortality following thermal
bleaching (63), so the reasons for the observed lack of recovery in
areas with poor water quality might be equally complex.
Species of the genus Acropora play a significant role in reef

ecosystems as key framework builders and habitat providers for
numerous organisms (64). If we have learned anything from the
decline of coral reefs in the Caribbean, it is that irreversible changes
in coral communities may go unnoticed until it is too late (21).
While mortality of Acropora corals at many sites in the Palm Islands
can be attributed to multiple acute disturbances in recent years and
even broad-scale climatic phenomenon such as the PDO, several
factors such as low reef fish herbivory, dramatic changes in benthic
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Station 32031 (source: Australian Bureau of Meteorology). (C) Annual
maximum, average, and minimum SST anomalies (HaddSST2) for 5 × 5 grid
147.5 °E, 17.5 °S from 1900 to 2014 (source: Hadley Centre). Relative prob-
ability curves (72) produced from the U-Th age data obtained from the dead
Acropora coral skeletons for (D) Pelorus S1, S2, and S3; (E) Fantome S3; (F)
Havannah S2 and S3; and (G) Pandora S1. The height and width of the curves
represent the number of samples that date to the same time period and
associated error, respectively. Individual 230Th ages ± 2σ age errors are also

shown. Vertical dark gray lines indicate the timing of observed Acropora
mortality associated with flooding (F) and thermal bleaching (B) in 1982/83,
1987/88, 1994, and 1998 (SI Appendix, Table S7). Vertical light gray lines
highlight a further two (possibly three) mortality events at Pelorus. Samples
HavS2T4.1, PelS1T2.2, PelS1T2.5, and PelS3T4.3 fall outside the x axis.

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1705351114 Clark et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705351114/-/DCSupplemental/pnas.1705351114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705351114/-/DCSupplemental/pnas.1705351114.sapp.pdf
http://research.jisao.washington.edu/pdo/PDO.latest.txt
http://research.jisao.washington.edu/pdo/PDO.latest.txt
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705351114/-/DCSupplemental/pnas.1705351114.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1705351114


structure, low rates of juvenile coral survival, and poor water quality
in the region may be implicated in their delayed recovery over
longer time frames and warrant close monitoring. Knowledge of
rates of mortality and recovery will be critical under projected
global warming scenarios, with the frequency and severity of coral
bleaching and mortality expected to result in the long-term decline
of susceptible genera (65). Where the time required for recovery
exceeds the time between disturbance events, this may pose a serious
threat to the long-term sustainability of coral abundance and reef
health in the GBR and warrants further in-depth research. In this
regard, high-resolution U-Th dating of surficial coral death as-
semblages (top ∼10 cm of the reef matrix) coupled with systematic
dating of reef matrix cores reaching greater depths, provides a
means for benchmarking recovery rates and could also be used to
assess the resilience of coral assemblages, especially for many other
reef sites where modern observations are lacking.

Materials and Methods
Study Location and Sampling. The Palm Islands (18°30′–19°00′S and 146°25′–
146°45′E) are located 20–40 km offshore in the central inshore region of the
GBR, and include ≈12 continental islands with fringing reefs and one platform
reef (Pandora Reef). This region lies adjacent to the heavily modified Burdekin
River catchment and is routinely exposed to sediment and contaminant-laden
flood plume waters from the Burdekin, Herbert, and several other smaller rivers.
In this study, three sites were selected from the leeward side of Pandora Reef
and Pelorus, Orpheus, Fantome, and Havannah Islands (Fig. 1), where four 20-m
transects per site were laid parallel to the reef flat at a depth contour of 5–6 m in
May 2008 (SI Appendix, Table S2). This sampling depth was chosen to (i) avoid
any confounding effects of depth, and (ii) standardize depth with previous long-
term monitoring surveys. Surveys of community structure were performed along
each of the 20-m transects using both a still camera and video, and later analyzed
with CPCe at 1-m2 increments using 30 points per quadrat (66). Community
structure was categorized by quantifying total cover of: live hard coral, dead
coral, soft coral, algae, other substratum (substrate and sediment), and un-
known. To assess variability in coral assemblages at a coarse taxonomic level,
coral cover was categorized into dominant genera typically found in the Palm
Islands region (such as Acropora, Porites, Goniopora, and others). Where
possible, the death assemblage was also divided into similar dominant genera.
Samples of the death assemblage were taken from the sediment–water in-
terface following similar procedures described in Greenstein and Pandolfi (67)

to be able to determine their age. At each site, five grab samples were col-
lected along each of the four 20-m transects where coral rubble was present.
Approximately 5 L of coral rubble was collected in calico bags, excavated from
the same point to a depth of 10 cm (which was logistically feasible for a diver to
collect by hand as below 10 cm the rubble was often cemented), and within a
2-m radius of the initial excavation site until the bag was filled. Previous work on
the GBR has proven that this method is sufficient to capture recent changes in
community composition (37).

Sample Preparation and U-Th Dating. To constrain the timing ofmortality of the
dominant genera in the death assemblage (see SI Appendix for discussion on
preservation bias), 215 dead branching Acropora corals were randomly selected
from each calico bag (where present) collected fromHavannah (S2, S3), Fantome
(S3), Pelorus (S1, S2, S3), and Pandora (S1) and their age determined using the
highly precise and accurate U-Th dating method. Approximately 1 g of material
for dating was selected from within 16 cm of the branch tip (free from alter-
ation) and was cut using a diamond blade saw, crushed into a 1-mm-size frac-
tion using an agate mortar and pestle, rigorously cleaned and vetted using
procedures described in Clark et al. (40). U-Th chemistry and dating was per-
formed at the Radiogenic Isotope Facility, The University of Queensland, using
thermal ionization mass spectrometry (68, 69) and a Nu Plasma high resolution
multicollector inductively coupled plasma mass spectrometer (70). For further
detail, please refer to SI Appendix.

Ecological Data Analysis.Multivariate analysis using PRIMER version 6.1.10 with
PERMANOVA + extension was used to examine differences in live community
structure as well as live and death assemblage community composition within
and among sites (71). For further detail, please refer to SI Appendix.
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