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Abstract The Indo-Pacific is an area of intense ecological interest, not least because of
the region’s rich biodiversity. Important insights into the origins, evolutionary history, and
maintenance of Indo-Pacific reef faunas depend upon the analysis of faunal occurrences
derived from detailed stratigraphic sections. We investigated Neogene origination and
extinction patterns derived from a combination of new coral occurrences and previously
published records from the central Indo-West Pacific Ocean (cIWP, Indonesia, Papua New
Guinea and Fiji). Two faunal turnover events were observed. In the first, an increase in
generic richness of Scleractinia from the cIWP during the middle Miocene (17–14 Ma)
coincided with both large-scale sea level fluctuations and the great Mid-Miocene collision
event. We raise the hypothesis that Mid-Miocene origination was facilitated by habitat and
population fragmentation associated with tectonism and sea level fall. The second, sub-
sequent, turnover event was characterized by an overall lowering of generic diversity
throughout the late Miocene and Pliocene (7–3 Ma), and was followed by a pronounced
pulse of extinction at the Pliocene–Pleistocene boundary (*2.6 Ma). With the exception
of the onset of Pleistocene sea-level cycles and the onset of northern hemisphere glaciation
around 2.5 Ma, which might explain increased extinction during this time interval, there
are no tectonic, eustatic, climatic or oceanographic events that neatly coincide with this
second episode of Neogene coral taxonomic turnover. Our results reveal a total of 62
genera, including synonyms, from the Miocene to the Pleistocene. Neither episode of
turnover among coral genera is exactly coincident with turnover in the Atlantic thus
regional environmental change is found to drive Neogene reef dynamics.
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Introduction

The evolutionary history of coral reefs over the past 65 My has been characterized by
large-scale shifts in biodiversity associated with major tectonic events (Renema et al.
2008). The last of these shifts left a biodiversity hotspot in the Neogene of the Indo-Pacific
region that endures to the present. While major tectonic events surely play a role in the
large-scale evolution of tropical biodiversity, the drivers of regional biodiversity and
evolutionary turnover is largely unstudied in the Indo-Pacific region. Indeed, evolution of
the hard corals, or Scleractinia, has focused largely on sample locations in the northern
hemisphere (e.g. the Atlantic, Caribbean and East Pacific), and much is known about the
origins and dynamics of reefs in the western Atlantic (Budd and Johnson 1999; Budd et al.
1996, 1998; Johnson 2001; Johnson et al. 1995; O’Dea et al. 2007). In contrast, there is a
paucity of similar information available for the Indo-Pacific (though see Renema et al.
2008), despite the fact that the Indo-Pacific is presently the global centre for marine
biodiversity (Barber 2009; Hoeksema 2007; Roberts et al. 2002).

Scleractinian corals, the dominant frame-builder on modern coral reefs, first became
important in the shallow seas of the Tethys during the Mesozoic, where they quickly
evolved into a pan-tropical fauna (Potts 1983). Most modern families and genera were
present by the middle Cenozoic. During the Oligocene (*34–23 Ma), closure of the
Tethys (Rogl and Steininger 1984; Rogl 1999; Bunje and Lindberg 2007) meant that the
original Tethyan fauna divided into the two unique faunas of the modern tropical Atlantic
and the Indo-Pacific regions (Stehli and Wells 1971; Vaughan and Wells 1943; although
see Harzhauser et al. 2002 for a comprehensive review of biogeographic events in the
Paratethys/Mediterranean during the Oligocene–Miocene). Indo-Pacific coral communities
had been isolated from the Tethyan pan-tropical fauna since sometime before the early
Eocene, and the present faunal distribution of corals in the Indo-Pacific was established by
the early Miocene (Rosen and Smith 1988). First appearances of Scleractinia in the Pal-
aeocene Indo-Pacific (Wilson and Rosen 1998) were followed by a rapid increase in
generic diversity in the region during the Neogene (Rosen 1988a, b; Rosen and Smith
1988; Wilson and Rosen 1998). Thus sometime from the late Oligocene/early Miocene,
modern patterns of high coral diversity began to emerge in the Indo-West Pacific (Wilson
and Rosen 1998).

Predicting the response of ecosystems to environmental change is difficult given both
the enormous complexity of ecological interactions and the challenges of obtaining
detailed stratigraphic/chronologic control of both drivers and ecological events (O’Dea
et al. 2007). The added factors of lag times and non-linearity in ecosystem response to
environmental change make correlation between evolutionary events and environmental
drivers even more challenging, and increase difficulty in assigning causation (e.g. O’Dea
and Jackson 2009). In this study, we begin to unravel the relationship between environment
and evolution in Neogene Indo-Pacific coral reefs by making detailed observations of
faunal change in a region of the cIWP encompassed by Indonesia, Papua New Guinea, and
Fiji. We then discuss these changes in the context of documented physical changes.
Specifically, we investigate coral generic richness and faunal turnover (patterns in origi-
nation and extinction) in the cIWP from the early Miocene to the early Quaternary cov-
ering from 17 to 1.8 Ma (see Bromfield and Renema 2011 for age limitations). We search
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for global (e.g. climate change) and regional (e.g. tectonic) environmental correlates of
evolutionary change in reef corals. To enhance our environmental interpretations and to
investigate the potential for common global drivers in the Indo-Pacific and Caribbean, we
compare the timing and potential environmental drivers of corresponding evolutionary
patterns in the cIWP with those previously documented in the Neogene and early Qua-
ternary in the West Atlantic.

Materials and methods

Study sites

We sampled Neogene strata from three cIWP sites (Fig. 1), including the Salayar Lime-
stone from Salayar Island in Indonesia (Fig. 1a); the Yalam Limestone from East New
Britain, Papua New Guinea (P.N.G.; Fig. 1b); and the Daliconi and Futuna Limestone
members of the Tokelau Limestone Group from Vanua Balevu in the Lau Group, Fiji
(Fig. 1c). In these locations, rock formations with coral bearing reef deposits are uplifted
and accessible above sea level. Each locality has been described within a precise chro-
nological framework: corals from the Salayar Limestone grew between 5.8 and 1.4 Ma,
those from the Yalam limestone grew between 14.8 and 12.3 Ma and those from the

Fig. 1 Regional maps showing the location of sampled sections. a Salayar, South Sulawesi, with the
Benteng West section (ISS 1) and Toto section (ISS 2); b East New Britain, Papua New Guinea (P.N.G.),
with the Ramanadu section (P.N.G. 1) and Malasait section (P.N.G. 2); c Vanua Balevu, Lau Group, Fiji,
with the Daliconi section (FLV 1), Namalata section (FLV 2) and Wai-Ruku section (FLV 3). From
Bromfield and Renema (2011)
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Tokelau Limestone Group grew between 16.9 and 6.7 Ma (Bromfield and Renema 2011;
and references therein). Sedimentary beds from all localities formed in similar depositional
environments, either in the intermediate or lower reef slope, in water depths ranging from
10 to 30 m (Table 1: Bromfield and Renema 2011).

The Salayar Limestone is a massive coralliferous limestone and calcarenite, with
intercalations of marl and calcareous sandstone (Koswara et al. 1994; Sukamto and Sup-
riatna 1982; Wilson 2002). The Yalam Limestone is a bioclastic limestone with thickly
interbedded clayey biomicrite and chalky limestone (Lindley 1988). The Tokelau Lime-
stone is a sporadically coralliferous, massive, recrystallised biogenic limestone with local
volcanogenic debris (Rodda 1994).

Sampling

Compilations of coral genera were derived from three new sampling locations in the
central Indo-West Pacific Ocean (cIWP). At each location, replicate sections were estab-
lished and stacked horizontal belt transects were used to characterize genus abundance
patterns of coral communities at each section. In Indonesia, we sampled four transects in
two sections: in Fiji, we sampled three transects in two sections and four transects at a third
section: and in New Britain we sampled four transects in one section and three transects in
a second section (Fig. 2). Corals were collected along time standardised transects (1 h per
20 m) and transect length (Table 2) was determined by the extent of the exposed section.
All corals encountered within 1 m above and below the transect tape were collected for
subsequent identification, and the number of taxa per section are given in Table 2. The
number of stacked transects was determined by the thickness and accessibility of each
geological section. This sampling design, with multiple stacked transects per location, is
essential for calculating stratigraphic range when fossil horizons are separated by unequal
temporal intervals (see Marshall 1990, 1994).

Taxonomic classification of genera followed Vaughan and Wells (1943), Wells (1956),
Reyes-Bonilla (2002), and Baron-Szabo (2006), with the addition of microskeletal infor-
mation provided by Chevalier and Beauvis (1987). Further fossil identification was made
with the aid of the Neogene Marine Biota of Tropical America (NMITA) database (Budd
et al. 2006), and the Scleractinia of Eastern Australia, Parts 1–5 (Veron and Pichon 1976,
1979, 1982; Veron et al. 1977; Veron and Wallace 1984). Specimens were compared with
type specimens of Neogene Indo-Pacific corals held at the Naturalis Museum, Leiden,
Netherlands.

Table 1 Neogene to quaternary
formations sampled within the
central Indo-West Pacific region
with corresponding ages and
depositional environments

a Bromfield and Renema (2011)

Location and unit name Agea Environmenta

Indonesia

Salayar limestone 5.8–1.4 Intermediate reef slope

P.N.G.

Yalam limestone 14.8–12.3 Intermediate to lower reef slope

FIJI

Futuna Limestone 16.9–6.7

Daliconi Limestone 16.9–15.5 Intermediate to lower reef slope
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Data analysis

We constructed taxonomic accumulation curves to establish the adequacy of our sampling
effort. Accumulation curves were generated using presence/absence of genera in the Mao
Tau estimator of EstimateS 8 (Colwell et al. 2004) with 999 random permutations to define
curves for samples from each location.

To examine generic richness throughout the Neogene, we calculated two diversity
indices, Chao 2 (Chao 1984, 1987) and the incidence based coverage estimate (ICE mean)
(Chao et al. 2000; Chazdon et al. 1998), for our new collections, and we plotted these
through time using EstimateS (Colwell 2005). For each analysis, the number of runs was
set to 1 and samples were arranged in ascending order of age [age values were assigned
using published Sr isotopic ages (Bromfield and Renema 2011)]. From this we assigned the
predicted richness values to the appropriate time interval of the sample. Values for Chao2
were calculated using the classic algorithm in EstimateS (Colwell et al. 2004). The Chao2
index augments the observed number of specimens according to the number of unique or

Fig. 2 Graphic logs of each section from each location. Scales on the left are in meters. Dashed lines 1–4
represent transect positions on each section. Transect ages are given in Table 2. Modified from Bromfield
and Renema (2011)
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duplicate genera within the dataset (Colwell and Coddingham 1996). Upper and lower 95%
confidence intervals were generated for the Chao2 index. In contrast, the ICE mean
normalises collections according to the presence or absence of rare genera, and tends to
provide a higher estimate of richness than other methods (Colwell 2005; Colwell et al.
2004).

Literature survey

In order to investigate the history of faunal turnover in coral genera in the cIWP during the
Neogene and early Quaternary, and to establish the first and last appearances of coral
genera, field data were combined with information on coral occurrences from Indonesia,
Papua New Guinea and Fiji, derived from the literature (Dana 1846; Felix 1898, 1913,
1915, 1921; Gerth 1921a, b, 1923, 1925, 1930; Hoffmeister 1942; Lamarck 1801, 1816;
Martin 1880; Michelin 1840–1847; Milne Edwards and Haime 1848; Orbigny 1849; Os-
berger 1946; Quelch 1886; Reuss 1867; Umbgrove 1939, 1942, 1945, 1946a, b, 1950;
Veron and Kelly 1988; Veron and Pichon 1976, 1979, 1982; Veron et al. 1977; Veron and

Table 2 Details of sampled transects in each section from Neogene localities of the cIWP

Location Section/
transect

Age (Ma) Latitude Longitude Elevation
(m)

Length
(m)

Number
of Taxa

Indonesia 1.1 5.8 6"11052.65600S 120"16059.5200W 22 20 22

1.2 5.6 6"11052.65600S 120"16059.5200W 27 10 16

1.3 4.4 6"11052.65600S 120"16059.5200W 50 13 9

1.4 3.4 6"11052.65600S 120"16059.5200W 67 50 14

3.1 1.6 5"54031.7600S 120"30049.82400W 279 10 12

3.2 1.54 5"54031.7600S 120"30049.82400W 289 9 8

3.3 1.49 5"54031.7600S 120"30049.82400W 299 8 20

3.4 1.4 5"54031.7600S 120"30049.82400W 314 33 14

P.N.G. 2.1 14.8 4"17059.92800S 151"50017.44800W 198 22 18

2.2 14.5 4"17059.92800S 151"50017.44800W 215 20 17

2.3 14 4"17059.92800S 151"50017.44800W 239 14 10

2.4 13.8 4"17059.92800S 151"50017.44800W 250 57 13

3.1 14.4 4"2806.74400S 151"53035.73600W 398 30 5

3.2 13.2 4"2806.74400S 151"53035.73600W 590 15 3

3.3 12.7 4"2806.74400S 151"53035.73600W 640 15 7

Fiji 1.1 16.9 17"12058.10400S 178"57059.86800W 0 20 14

1.2 16.7 17"12058.10400S 178"57059.86800W 1.85 50 34

1.3 15.5 17"12058.10400S 178"57059.86800W 13 10 14

2.1 6.7 17"11045.14800S 178"35045.38400W 0 200 21

2.2 6.7 17"11045.14800S 178"35045.38400W 2 100 6

2.3 13.4 17"11045.14800S 178"35045.38400W 7 100 4

3.1 13.4 17"18055.90800S 178"59034.33200W 0 50 7

3.2 11.6 17"18055.90800S 178"59034.33200W 1.8 27 4

3.3 9.4 17"18055.90800S 178"59034.33200W 4 15 3

3.4 6.9 17"18055.90800S 178"59034.33200W 6.5 10 3

Elevation is in meters above present sea level. From Bromfield and Renema (2011)
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Wallace 1984; Verrill 1865; Wilson 1995; Wilson and Rosen 1998). The records of fossil
cIWP corals have been checked for synonyms by comparing notes and diagrams from the
published literature, and in some cases by comparing type specimens with published
records, to avoid duplication of generic ranges. The combined data was used to construct
range charts for Scleractinia in the cIWP, using the ‘‘long range’’ method that extends the
range of a taxon to the end of the stage in which it occurred (see Johnson 2001). Appendix
1 is a checklist of coral genera identified from our new collections, along with those
reported previously in the literature.

The combined data was also used to plot the generic first and last appearance datums
(FAD’s and LAD’s) to investigate temporal patterns in origination and extinction. FADs
and LADs are endpoints of time intervals spanning taxon occurrences in the fossil record,
and provide the taxon range (Sadler 2004). Extended taxon ranges were plotted in 2 Myr
bins. For example, a genus known to have existed in the Langhian (middle Miocene;
15.97–13.65 Ma), would be allocated a position in the 17–15 Ma, and 15–13 Ma bins. This
has the effect of smoothing the data; that is, capturing the important patterns, while
eliminating noise. Combining prior records of generic occurrences from the Indo-Pacific,
with our own new dataset helps to minimize the potential for observed patterns to result
from overprinting of sampling locality and taphonomy and not be representative of Neo-
gene diversity trends.

Results

The highest number of genera were collected from Indonesia with 30 along 8 transects.
Twenty-three genera along 7 transects were collected from both Fiji and P.N.G. (Fig. 3).
The genus accumulation curve for samples collected from P.N.G. appears to level after 6
transects, while the curves for samples collected from Indonesia and Fiji have a slightly
shallower incline towards their asymptotes, indicating slight under-representation of
genera (Fig. 3).

Estimated generic richness fluctuated between 30 and 40 (95% CI—50) from 17 to
14 Ma (Fig. 4). Richness then remained constant, at *38 (95% CI—50) genera for much
of the rest of the Miocene, until a peak in generic richness of *40 (95% CI—70) occurred
*7–5 Ma. This was followed by a decline over the Miocene-Pliocene boundary that
continued until 1.8 Ma. After the beginning of the Pleistocene, the number of genera
rapidly increased to *45 (95% CI—120).

Using the combination of literature-based and field-based generic compilations, we
found two episodes of faunal turnover in the central Indo-West Pacific region (Fig. 5). The

Fig. 3 Neogene to Quaternary
coral genus accumulation curves
for new collections of
Scleractinian corals from Fiji,
Indonesia and Papua New Guinea
(P.N.G.)
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first was an increase in origination during the middle Miocene, when fourteen new genera
arose between 17 and 14 Ma (Fig. 5a). The second was an episode of stepwise origination
of new coral genera and the simultaneous extinction of others during the late Miocene and
Pliocene (7–3 Ma), followed by the extinction of genera at the Pliocene–Pleistocene
boundary (*2.6 Ma: Fig. 5b).

Nine new coral genera arose after the end of the Miocene, *5 Ma, while five genera
became extinct during the late Miocene, between 11 and 5 Ma, and 12 became extinct
during the Pliocene, between 5 and *2 Ma (Fig. 6b). Sampling effort shows a positive
relationship with generic diversity (Fig. 6a), so under-sampled times (including the gap
between 9 and 7 Ma) need to be targeted to verify the observed turnover events.

Discussion

By expanding the range of some genera (for example Madracis, Turbinaria and Ctenella),
we demonstrate that some genera in the cIWP may have had an older and more widespread
distribution than previously thought. The precise chronostratigraphic and biostratigraphic
framework of this study makes the patterns shown here more robust than was previously
possible, althoughwe recognise that they are likely to underestimate themagnitude of events.

Taxonomic turnover in the central Indo-West Pacific

The evolutionary history of coral reef organisms over broad time scales is generally related
to one or more physical factors: tectonic, eustatic, climatic or oceanographic (TECO)

Fig. 4 Coral genus richness through time, predicted using the Neogene samples collected in Indonesia,
P.N.G and Fiji. The ICE mean and Chao2 diversity indices are both shown, plus the 95% upper and lower
confidence intervals (CI) for the Chao2 calculations
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(Rosen 1984). In this study, we recognize two episodes of taxonomic turnover in the
central Indo-West Pacific Ocean. The first was an increase in origination during the early to
middle Miocene (17–14 Ma) and the second an episode of stepwise origination with
contemporaneous extinctions during the late Miocene and Pliocene (7–3 Ma) (Figs. 4a,
5b). The second event was followed by the increased extinction of genera at the Pliocene–
Pleistocene boundary (*2.6 Ma: Figs. 4b, 5b). The limited geographic coverage of our
analysis makes it difficult to ascribe individual coral turnover events to coincident envi-
ronmental factors, and the limited temporal resolution makes it difficult to accurately infer
the timing of regional events. However, our results do lend themselves to a discussion of
the concomitant TECO framework in the Indo-Pacific region, in order to determine the
environmental context of these turnover events.

The early Miocene (23–16 Ma) of the Indo-Pacific region, was characterized by an
order-of-magnitude expansion of shallow-carbonate areas through extensive reef devel-
opment (Wilson 2008). The peak of the Middle Miocene Climatic Optimum (MMCO)
occurred at 15 Ma (Fig. 7) and was charactaerized by warm temperatures and minimal
global ice (Warny et al. 2009). However, there followed a long-term cooling period from
14.7 to 13.9 Ma, with fluctuating ‘‘Icehouse’’ conditions (Holbourn et al. 2005, 2007).
These changes in climatic conditions are associated with increased coral origination in the
latter phases of the middle Miocene, with lowered or variable sea level reducing genetic
exchange among populations. Another important TECO event coincident with the first
turnover event in the early to middle Miocene (17–14 Ma), was initiation of the so-called
‘Great Mid-Miocene collision event’ around 15 Ma, a progressive collision between the

Fig. 5 Range charts of 62 Miocene to early Quaternary coral genera, from the central Indo-West Pacific
(Indonesia, P.N.G. and Fiji), arranged to highlight a first appearances and b last appearances. Graph
compiled using data on generic occurrences collated from the literature, shown as faint grey lines (see
‘‘Methods’’ for references), and from specimens collected during this study, shown as solid black lines.
Numbers on the x-axis correspond to the list of genera given in the appendix. Pli Pliocene and Q Quaternary
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Australian/New Guinea component of Gondwana and the Asian component of Laurasia
(Charlton 2000). This collision likely began as far back as 25 Ma, and continued pro-
gressively throughout the Miocene (Hall and Wilson 2000) but there is some agreement
that a significant component of this collision event occurred 15–14 Ma (Elburg et al. 2002
and references therein). It resulted in greater habitat differentiation and again, potential
fragmentation of established coral populations (Pandolfi 1993). We thus hypothesize that
our middle Miocene origination event was facilitated by tectonically-induced fragmenta-
tion of shallow water habitat in areas already replete with reef growth.

The second episode of faunal turnover in the cIWP comprised the origination of new
coral genera and the extinction of others during the late Miocene and Pliocene (7–3 Ma),
and was followed by a pronounced pulse of extinction at the Pliocene–Pleistocene
boundary (*2.6 Ma), which probably continued into the Pleistocene (see Veron and Kelly
1988). With the exception of the onset of Pleistocene sea-level cycles and northern
hemisphere glaciation around 2.5 Ma, which might explain increased extinctions during
this time interval, there are no TECO events that neatly coincide with this second episode
of Neogene coral taxonomic turnover. Restriction of the Indonesian Throughflow (ITF)
likely began in the early Miocene but peaked from 10 Ma to between 5 and 4 Ma (Kuhnt
et al. 2004). Then during the Pliocene Climatic Optimum (PCO: 4.5–3 Ma), climate was
considerably warmer than present, with global temperatures up to 3"C higher than modern
temperatures (Ravelo et al. 2004; Wara et al. 2005), CO2 concentrations *30% higher
than pre-industrial levels (Filipelli and Flores 2009; Raymo et al. 1996), and sea level up to

Fig. 6 Evolutionary turnover in Neogene to early Quaternary coral genera from the central Indo-West
Pacific during the last 17 million years; a the number of occurrences of genera relative to the number of
specimens collected during this study, and b first and last appearances of coral genera in the west-central
Indo-Pacific (Indonesia, P.N.G., and Fiji) through time, compiled from the literature (see in-text for
references), and from our new collections. Ple Pleistocene
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20 m higher than present (Ravelo et al. 2004). But polythermal conditions changed to
dryer, colder conditions from the middle to late Pliocene *5–2 Ma (Rebesco and Cam-
erlenghi 2008), culminating in the formation of extensive ice sheets in the Northern
Hemisphere by *2.5 Ma (Mudelsee and Raymo 2005; Raymo 1994; Wara et al. 2005).
However, in the equatorial Pacific, sea surface temperatures apparently remained constant
during this period of cooling. This was also a time of rapid sea-level fluctuation (Naish and
Wilson 2009).

It is tempting to postulate that taxonomic turnover in the cIWP occurred initially as a
response to changing tectonic regimes (see Hall 2001, 2002) throughout the Cenozoic, and
later as a response to rapid and repeated sea level and sea surface temperature fluctuations
in the Pliocene (Rosen 1988a, b), and further to sea-level fluctuations resulting from
Pleistocene glacial cycles (Mora et al. 2003). However, these interpretations must remain
as working hypotheses for the evolutionary history of Indo-Pacific coral reefs, which must
be further explored through greater spatial and temporal sampling of reef faunas. Finding

Fig. 7 Major taxonomic turnover and environmental events in Neogene to Quaternary coral reefs of the
central Indo-West Pacific Ocean and Caribbean Sea. Plot includes geological timescale (Gradstein et al.
2004), Oxygen isotope curve (Zachos et al. 2001) as a proxy for sea surface temperature, sea level curves
(Haq et al. 1987), and significant climatic and tectonic events of the Neogene. Light grey bars represent
permanent ice sheets, while thin black bars represent ephemeral ice formation at the poles. Ple Pleistocene
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drivers for this second episode of faunal turnover must await finer-scale taxonomy, broader
sampling and higher resolution environmental chronologies than are presently available.

Comparison with the Caribbean Sea

The biological response of the Neogene biota of the Caribbean to environmental change is
well known (Budd et al. 1996; Coates et al. 1992; Jackson and Johnson 2000; Johnson and
Kirby 2006; Klaus et al. 2008; O’Dea et al. 2007). Three major coral turnover events have
been documented in the Caribbean, but they are not strictly coincident with those from the
Indo-Pacific. The first event occurred between 24 and 16 Ma, with numerous genera
undergoing range restriction and regional extinction (Edinger and Risk 1994, 1995; Stehli
and Wells 1971). The second event was characterized by heightened origination among
genera in the late Miocene *10 Ma (Collins et al. 1996) and the third was a pulse of
extinctions in the Pliocene–Pleistocene between 4 and 1 Ma (Budd et al. 1994; Jones and
Hasson 1985). During this third event, no new genera arose, and even though numerous
genera once again underwent regional extinction and range migration, many are still extant
in the Indo-Pacific.

Similar to potential factors governing turnover in the middle Miocene of the cIWP,
turnover in the reef fauna of the Caribbean Sea between 24 and 16 Ma has also been
attributed to tectonically derived local changes in ocean circulation and upwelling in the
Miocene (Edinger and Risk 1994, 1995). In the late Miocene, the initial constriction of the
American Seaway began to increase the carbonate content of the sediments and induced
origination among reef corals (Collins et al. 1996). Final closure of the Panama seaway in
the Pliocene then affected global thermohaline circulation and contributed to a reorgani-
sation of oceanic and atmospheric systems (Filipelli and Flores 2009). Thus, the extinc-
tions from 4 to 1 Ma in the Neogene reef fauna of the Caribbean Sea have been attributed
to collapse in productivity as a result of the closure of the Isthmus of Panama (Jackson
et al. 1996; O’Dea and Jackson 2009) in the Pliocene–Pleistocene, though environmental
change per se, remains an insufficient explanation (O’Dea et al. 2007). O’Dea and Jackson
(2009) found that species of bryozoans that failed to adjust their reproductive strategies and
morphologies in response to the decline in productivity suffered an immediate decline,
then lingered in the environment for 2–1 My, which illustrates the observed lag in time
between the onset of environmental change and the onset of extinctions in the region (Budd
and Johnson 1999). It is interesting to note that in the Caribbean, while the corals were hard
hit, the record of their demise does not explain the biogeographic history of the region well.
It was necessary to examine other organisms (molluscs; calcareous algae) at the level of
species, and with a clear understanding of their biology and life histories (see Jackson et al.
1995; Jackson and Johnson 2000; O’Dea et al. 2007; O’Dea and Jackson 2009) before a
clear picture of the region could be developed.

The timing of turnover events in the Caribbean Sea (e.g. Budd 2000; Budd et al. 1996;
Jackson and Johnson 2000; Johnson 2001) and those found in the present study of the
cIWP are not temporally concordant, so that turnover events cannot have been a response
to mechanisms operating on a global scale. While both Indo-Pacific and Caribbean reefs
were characterized by multiple turnover episodes and substantial variability in generic
diversity from the Neogene to the early Quaternary, independent regional tectonic and
climatic drivers appear to have controlled these events. Future work on Indo-Pacific reefs
using multiple taxa at a variety of levels, from family down to species level, should help to
clarify the extent to which evolutionary trends in the two oceans are the result of similar
drivers.
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Mora C, Chittaro PM, Sale PF, Kritzer JP, Ludsin SA (2003) Patterns and processes in reef fish diversity.

Nature 421:933–936
Mudelsee M, Raymo ME (2005) Slow dynamics of the Northern Hemisphere glaciation. Paleoceanography

20:PA4022
Naish TR, Wilson GS (2009) Constraints on the amplitude of Mid-Pliocene (3.6–2.4 Ma) eustatic sea-level

fluctuations from the New Zealand shallow-marine sediment record. Philos Trans R Soc A 367(1886):
169–188

O’Dea A, Jackson JBC (2009) Environmental change drove macroevolution in cupuladriid bryozoans. Proc
R Soc B 276:3629–3634

O’Dea A, Jackson JBC, Fortunato H, Smith T, D’Croz L, Johnson KG, Todd JA (2007) Environmental
change preceded Caribbean extinction by 2 million years. Proc Natl Acad Sci USA 104(13):
5501–5506

Orbigny AD (1849) Note sur des polpiers fossiles. Victor Masson, Paris
Osberger R (1946) Research on fossil corals from Java. Geological Dept. Faculty of Science, University of

Indonesia, Bandung
Pandolfi JM (1993) A review of the tectonic history of New Guinea and its significance for marine biology,

vol 2. In: Proceedings of the seventh international reef symposium, pp 718–727
Potts DC (1983) Evolutionary disequilibrium among Indo-Pacific corals. Bull Mar Sci 33(3):619–632
Quelch JJ (1886) Report on the reef-corals collected by H.M.S. challenger during the years 1873–76. Report

on the scientific results of the voyage of the H.M.S. Challenger during the years 1873–76 (Zoology).
no. 16, p 208

Ravelo AC, Andreasen DH, Lyle M, Lyle AO, Wara MW (2004) Regional climate shifts caused by gradual
global cooling in the Pliocene epoch. Nature 429:263–267

Raymo ME (1994) The initiation of Northern Hemisphere glaciation. Annu Rev Earth Planet Sci
22:353–383

Raymo ME, Grant B, Horowitz M, Rau GH (1996) Mid-Pliocene warmth: stronger greenhouse and stronger
conveyor. Mar Micropaleontol 27:313–326

Rebesco M, Camerlenghi A (2008) Late Pliocene margin development and mega debris flow deposits on the
Antarctic continental margins: evidence of the onset of the modern Antarctic ice sheet? Palaeogeogr
Palaeoclimatol Palaeoecol 260:149–167

Renema W, Bellwood DR, Braga JC, Bromfield K, Hall R, Johnson KG, Lunt P, Meyer CP, McMonagle
LB, Morley RJ, O’Dea A, Todd JA, Wesselingh FP, Wilson ME, Pandolfi JM (2008) Hopping hot-
spots: global shifts in marine biodiversity. Science 321:654–657

Evol Ecol (2012) 26:375–391 389

123

Author's personal copy
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